Transparency in Fairness

Oliver Thomas - ot44 at sussex.ac.uk

Predictive Analytics Lab (PAL), University of Sussex, UK

 

 

Algorithmic fairness definitions

 

 

Algorithmic fairness methods

 

 

Transparency in fairness

Results on the adult income dataset

- Analysis on the relationship feature

- Feature values of the minority group are transformed to match the majority group

- Here, the wife value is translated to husband

Results on the adult income dataset

Interpretable can be fair!

original $X$ fair & interpretable $X$ latent embedding $Z$
Accuracy $\uparrow$ Eq. Opp $\downarrow$ Accuracy $\uparrow$ Eq. Opp $\downarrow$ Accuracy $\uparrow$ Eq. Opp $\downarrow$
LR $85.1\pm0.2$ $\mathbf{9.2\pm2.3}$ $84.2\pm0.3$ $\mathbf{5.6\pm2.5}$ $81.8\pm2.1$ $\mathbf{5.9\pm4.6}$
SVM $85.1\pm0.2$ $\mathbf{8.2\pm2.3}$ $84.2\pm0.3$ $\mathbf{4.9\pm2.8}$ $81.9\pm2.0$ $\mathbf{6.7\pm4.7}$
Fair Reduction LR $85.1\pm0.2$ $\mathbf{14.9\pm1.3}$ $84.1\pm0.3$ $\mathbf{6.5\pm3.2}$ $81.8\pm2.1$ $\mathbf{5.6\pm4.8}$
Fair Reduction SVM $85.1\pm0.2$ $\mathbf{8.2\pm2.3}$ $84.2\pm0.3$ $\mathbf{4.9\pm2.8}$ $81.9\pm2.0$ $\mathbf{6.7\pm4.7}$
Kamiran & Calders LR $84.4\pm0.2$ $\mathbf{14.9\pm1.3}$ $84.1\pm0.3$ $\mathbf{1.7\pm1.3}$ $81.8\pm2.1$ $\mathbf{4.9\pm3.3}$
Kamiran & Calders SVM $85.1\pm0.2$ $\mathbf{8.2\pm2.3}$ $84.2\pm0.3$ $\mathbf{4.9\pm2.8}$ $81.9\pm2.0$ $\mathbf{6.7\pm4.7}$
Zafar et al. $85.0\pm0.3$ $\mathbf{1.8\pm0.9}$ --- --- --- ---

Problems?

Spurious and non-spurious visualisations are not exciting!

Residual unfairness (transferability)